394 lines
14 KiB
Rust
394 lines
14 KiB
Rust
use crate::utility::list::List;
|
|
use crate::kernel::thread::Thread;
|
|
use crate::simulator::interrupt::InterruptStatus::InterruptOff;
|
|
use crate::simulator::machine::Machine;
|
|
use std::cell::RefCell;
|
|
use std::rc::Rc;
|
|
use super::thread_manager::ThreadManager;
|
|
|
|
/// Structure of a Semaphore used for synchronisation
|
|
pub struct Semaphore {
|
|
|
|
/// Counter of simultanous Semaphore
|
|
counter:i32,
|
|
/// QUeue of Semaphore waiting to be exucated
|
|
waiting_queue:List<Rc<RefCell<Thread>>>,
|
|
|
|
}
|
|
|
|
impl Semaphore {
|
|
|
|
/// Initializes a semaphore, so that it can be used for synchronization.
|
|
///
|
|
/// ### Parameters
|
|
/// - *counter* initial value of counter
|
|
/// - *thread_manager* Thread manager which managing threads
|
|
pub fn new(counter: i32) -> Semaphore{
|
|
Semaphore { counter, waiting_queue: List::default() }
|
|
}
|
|
|
|
/// Decrement the value, and wait if it becomes < 0. Checking the
|
|
/// value and decrementing must be done atomically, so we
|
|
/// need to disable interrupts before checking the value.
|
|
///
|
|
/// Note that thread_manager::thread_sleep assumes that interrupts are disabled
|
|
/// when it is called.
|
|
///
|
|
/// ### Parameters TODO Refaire
|
|
/// - *current_thread* the current thread
|
|
/// - *machine* the machine where the threads are executed
|
|
pub fn p(&mut self, machine: &mut Machine, thread_manager: &mut ThreadManager) {
|
|
let old_status = machine.interrupt.set_status(InterruptOff);
|
|
self.counter -= 1;
|
|
if self.counter < 0 {
|
|
match thread_manager.get_g_current_thread() {
|
|
Some(thread) => {
|
|
let rc1_thread = Rc::clone(thread);
|
|
let rc2_thread = Rc::clone(thread);
|
|
self.waiting_queue.push(rc1_thread);
|
|
thread_manager.thread_sleep(machine, rc2_thread);
|
|
},
|
|
None => unreachable!("Current thread should not be None")
|
|
}
|
|
}
|
|
machine.interrupt.set_status(old_status);
|
|
}
|
|
|
|
/// Increment semaphore value, waking up a waiting thread if any.
|
|
/// As with P(), this operation must be atomic, so we need to disable
|
|
/// interrupts.
|
|
///
|
|
/// scheduler::ready_to_run() assumes that interrupts
|
|
/// are disabled when it is called.
|
|
///
|
|
/// ### Parameters
|
|
/// - **machine** the machine where the threads are executed
|
|
/// - **scheduler** the scheduler which determine which thread to execute
|
|
pub fn v(&mut self, machine: &mut Machine, thread_manager: &mut ThreadManager){
|
|
let old_status = machine.interrupt.set_status(InterruptOff);
|
|
self.counter += 1;
|
|
match self.waiting_queue.pop() {
|
|
Some(thread) => thread_manager.ready_to_run(thread),
|
|
None => ()
|
|
}
|
|
machine.interrupt.set_status(old_status);
|
|
}
|
|
}
|
|
|
|
/// Lock used for synchronisation, can be interpreted has a Semaphore with a
|
|
/// counter of 1
|
|
/// It's used for critical parts
|
|
pub struct Lock{
|
|
|
|
/// Thread owning the lock
|
|
owner: Option<Rc<RefCell<Thread>>>,
|
|
/// The queue of threads waiting for execution
|
|
waiting_queue:List<Rc<RefCell<Thread>>>,
|
|
/// A boolean definig if the lock is free or not
|
|
free: bool
|
|
|
|
}
|
|
|
|
impl Lock {
|
|
|
|
/// Initialize a Lock, so that it can be used for synchronization.
|
|
/// The lock is initialy free
|
|
///
|
|
/// ### Parameters
|
|
/// - **thread_manager** Thread manager which managing threads
|
|
pub fn new() -> Lock {
|
|
Lock { owner: None, waiting_queue: List::default(), free: true }
|
|
}
|
|
|
|
/// Wait until the lock become free. Checking the
|
|
/// state of the lock (free or busy) and modify it must be done
|
|
/// atomically, so we need to disable interrupts before checking
|
|
/// the value of free.
|
|
///
|
|
/// Note that thread_manager::thread_seep assumes that interrupts are disabled
|
|
/// when it is called.
|
|
///
|
|
/// ### Parameters
|
|
/// - **current_thread** the current thread
|
|
/// - **machine** the machine where the threads are executed
|
|
pub fn acquire(&mut self, machine: &mut Machine, thread_manager: &mut ThreadManager) {
|
|
let old_status = machine.interrupt.set_status(InterruptOff);
|
|
if self.free {
|
|
self.free = false;
|
|
self.owner = Option::Some(match thread_manager.get_g_current_thread() {
|
|
Some(th) => {
|
|
Rc::clone(&th)
|
|
},
|
|
None => unreachable!()
|
|
});
|
|
} else {
|
|
match thread_manager.get_g_current_thread() {
|
|
Some(x) => {
|
|
let x = Rc::clone(&x);
|
|
self.waiting_queue.push(Rc::clone(&x));
|
|
thread_manager.thread_sleep(machine, Rc::clone(&x));
|
|
},
|
|
None => unreachable!("Current thread should not be None")
|
|
}
|
|
}
|
|
|
|
machine.interrupt.set_status(old_status);
|
|
}
|
|
|
|
/// Wake up a waiter if necessary, or release it if no thread is waiting.
|
|
/// We check that the lock is held by the g_current_thread.
|
|
/// As with Acquire, this operation must be atomic, so we need to disable
|
|
/// interrupts. scheduler::ready_to_run() assumes that threads
|
|
/// are disabled when it is called.
|
|
///
|
|
/// ### Parameters
|
|
/// - **machine** the machine where the code is executed
|
|
/// - **scheduler** the scheduler which determine which thread to execute
|
|
pub fn release(&mut self, machine: &mut Machine, thread_manager: &mut ThreadManager) {
|
|
let old_status = machine.interrupt.set_status(InterruptOff);
|
|
|
|
match thread_manager.get_g_current_thread() {
|
|
Some(_) => {
|
|
if self.held_by_current_thread(thread_manager) {
|
|
match self.waiting_queue.pop() {
|
|
Some(thread) => {
|
|
self.owner = Some(thread);
|
|
match &self.owner {
|
|
Some(x) => thread_manager.ready_to_run(Rc::clone(&x)),
|
|
None => ()
|
|
}
|
|
},
|
|
None => {
|
|
self.free = true;
|
|
self.owner = None;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
None => ()
|
|
}
|
|
|
|
machine.interrupt.set_status(old_status);
|
|
}
|
|
|
|
/// True if the current thread holds this lock.
|
|
/// Useful for checking in Release, and in Condition operations below.
|
|
pub fn held_by_current_thread(&mut self, thread_manager: &mut ThreadManager) -> bool {
|
|
match &self.owner {
|
|
Some(x) =>
|
|
match thread_manager.get_g_current_thread() {
|
|
Some(thread) => Rc::ptr_eq(x, thread),
|
|
None => false
|
|
}
|
|
None => false
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Structure of a condition used for synchronisation
|
|
pub struct Condition{
|
|
|
|
/// The queue of threads waiting for execution
|
|
waiting_queue:List<Rc<RefCell<Thread>>>,
|
|
|
|
}
|
|
|
|
impl Condition {
|
|
|
|
/// Initializes a Condition, so that it can be used for synchronization.
|
|
///
|
|
/// ### Parameters
|
|
/// - *thread_manager* Thread manager which managing threads
|
|
pub fn new() -> Condition {
|
|
Condition{ waiting_queue: List::default()}
|
|
}
|
|
|
|
/// Block the calling thread (put it in the wait queue).
|
|
/// This operation must be atomic, so we need to disable interrupts.
|
|
///
|
|
/// ### Parameters
|
|
/// - **current_thread** the current thread
|
|
/// - **machine** the machine where threads are executed
|
|
pub fn wait(&mut self, machine: &mut Machine, thread_manager: &mut ThreadManager) {
|
|
let old_status = machine.interrupt.set_status(InterruptOff);
|
|
match thread_manager.get_g_current_thread() {
|
|
Some(thread) => {
|
|
let rc1 = Rc::clone(thread);
|
|
let rc2 = Rc::clone(thread);
|
|
self.waiting_queue.push(rc1);
|
|
thread_manager.thread_sleep(machine, rc2);
|
|
},
|
|
None => unreachable!()
|
|
}
|
|
|
|
machine.interrupt.set_status(old_status);
|
|
}
|
|
|
|
/// Wake up the first thread of the wait queue (if any).
|
|
/// This operation must be atomic, so we need to disable interrupts.
|
|
///
|
|
/// ### Parameters
|
|
/// - **machine** the machine where the code is executed
|
|
/// - **scheduler** the scheduler which determine which thread to execute
|
|
pub fn signal(&mut self, machine: &mut Machine, thread_manager: &mut ThreadManager) {
|
|
let old_status = machine.interrupt.set_status(InterruptOff);
|
|
|
|
match self.waiting_queue.pop() {
|
|
Some(thread) => thread_manager.ready_to_run(thread),
|
|
None => ()
|
|
}
|
|
|
|
machine.interrupt.set_status(old_status);
|
|
|
|
}
|
|
|
|
/// Wake up all threads waiting in the waitqueue of the condition
|
|
/// This operation must be atomic, so we need to disable interrupts.
|
|
///
|
|
/// ### Parameters
|
|
/// - **machine** the machine where the code is executed
|
|
/// - **scheduler** the scheduler which determine which thread to execute
|
|
pub fn broadcast(&mut self, machine: &mut Machine, thread_manager: &mut ThreadManager) {
|
|
let old_status = machine.interrupt.set_status(InterruptOff);
|
|
|
|
match self.waiting_queue.pop() {
|
|
Some(thread) => thread_manager.ready_to_run(thread),
|
|
None => ()
|
|
}
|
|
machine.interrupt.set_status(old_status);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod test {
|
|
use std::{rc::Rc, cell::RefCell};
|
|
|
|
use crate::{kernel::{thread::Thread, synch::{Semaphore, Lock}, thread_manager::ThreadManager}, simulator::machine::Machine};
|
|
|
|
#[test]
|
|
fn test_semaphore_single() {
|
|
// Init
|
|
let mut machine = Machine::init_machine();
|
|
let mut thread_manager = ThreadManager::new();
|
|
let mut semaphore = Semaphore::new(1);
|
|
let thread = Rc::new(RefCell::new(Thread::new("test_semaphore")));
|
|
thread_manager.ready_to_run(Rc::clone(&thread));
|
|
thread_manager.set_g_current_thread(Some(thread));
|
|
// P
|
|
semaphore.p(&mut machine, &mut thread_manager);
|
|
assert_eq!(semaphore.counter, 0);
|
|
assert!(semaphore.waiting_queue.is_empty());
|
|
// V
|
|
semaphore.v(&mut machine, &mut thread_manager);
|
|
assert_eq!(semaphore.counter, 1);
|
|
assert!(semaphore.waiting_queue.is_empty());
|
|
}
|
|
|
|
#[test]
|
|
fn test_semaphore_multiple() {
|
|
// Init
|
|
let mut tm = ThreadManager::new();
|
|
let mut machine = Machine::init_machine();
|
|
let mut semaphore = Semaphore::new(2);
|
|
let thread1 = Rc::new(RefCell::new(Thread::new("test_semaphore_1")));
|
|
let thread2 = Rc::new(RefCell::new(Thread::new("test_semaphore_2")));
|
|
let thread3 = Rc::new(RefCell::new(Thread::new("test_semaphore_3")));
|
|
|
|
// let mut borrow_tm = tm.borrow_mut();
|
|
// let scheduler = &mut tm.g_scheduler;
|
|
tm.ready_to_run(Rc::clone(&thread1));
|
|
tm.ready_to_run(Rc::clone(&thread2));
|
|
tm.ready_to_run(Rc::clone(&thread3));
|
|
// P
|
|
tm.set_g_current_thread(Some(Rc::clone(&thread1)));
|
|
semaphore.p(&mut machine, &mut tm);
|
|
assert_eq!(semaphore.counter, 1);
|
|
assert!(semaphore.waiting_queue.is_empty());
|
|
|
|
tm.set_g_current_thread(Some(Rc::clone(&thread2)));
|
|
semaphore.p(&mut machine, &mut tm);
|
|
assert_eq!(semaphore.counter, 0);
|
|
assert!(semaphore.waiting_queue.is_empty());
|
|
|
|
tm.set_g_current_thread(Some(Rc::clone(&thread3)));
|
|
semaphore.p(&mut machine, &mut tm);
|
|
assert_eq!(semaphore.counter, -1);
|
|
assert!(semaphore.waiting_queue.iter().count() == 1);
|
|
|
|
// V
|
|
semaphore.v(&mut machine, &mut tm);
|
|
assert_eq!(semaphore.counter, 0);
|
|
assert!(semaphore.waiting_queue.is_empty());
|
|
|
|
semaphore.v(&mut machine, &mut tm);
|
|
assert_eq!(semaphore.counter, 1);
|
|
assert!(semaphore.waiting_queue.is_empty());
|
|
|
|
semaphore.v(&mut machine, &mut tm);
|
|
assert_eq!(semaphore.counter, 2);
|
|
assert!(semaphore.waiting_queue.is_empty());
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
fn test_lock_simple() {
|
|
let mut machine = Machine::init_machine();
|
|
let mut tm = ThreadManager::new();
|
|
let thread = Rc::new(RefCell::new(Thread::new("test_lock")));
|
|
tm.ready_to_run(Rc::clone(&thread));
|
|
tm.set_g_current_thread(Some(Rc::clone(&thread)));
|
|
let mut lock = Lock::new();
|
|
|
|
assert!(lock.free);
|
|
lock.acquire(&mut machine, &mut tm);
|
|
assert!(lock.held_by_current_thread(&mut tm));
|
|
|
|
assert!(!lock.free);
|
|
lock.release(&mut machine, &mut tm);
|
|
assert!(!lock.held_by_current_thread(&mut tm));
|
|
assert!(lock.free);
|
|
}
|
|
|
|
#[test]
|
|
fn test_lock_multiple() {
|
|
let thread1 = Rc::new(RefCell::new(Thread::new("test_lock1")));
|
|
let thread2 = Rc::new(RefCell::new(Thread::new("test_lock2")));
|
|
|
|
let mut machine = Machine::init_machine();
|
|
let mut tm = ThreadManager::new();
|
|
|
|
tm.ready_to_run(Rc::clone(&thread1));
|
|
tm.ready_to_run(Rc::clone(&thread2));
|
|
|
|
tm.set_g_current_thread(Some(Rc::clone(&thread1)));
|
|
let mut lock = Lock::new();
|
|
|
|
assert!(lock.free);
|
|
lock.acquire(&mut machine, &mut tm);
|
|
assert!(lock.held_by_current_thread(&mut tm));
|
|
assert!(!lock.free);
|
|
|
|
tm.set_g_current_thread(Some(Rc::clone(&thread2)));
|
|
lock.acquire(&mut machine, &mut tm);
|
|
|
|
|
|
tm.set_g_current_thread(Some(Rc::clone(&thread1)));
|
|
assert!(lock.held_by_current_thread(&mut tm));
|
|
assert!(lock.waiting_queue.iter().count() == 1);
|
|
assert!(!lock.free);
|
|
|
|
lock.release(&mut machine, &mut tm);
|
|
assert!(!lock.held_by_current_thread(&mut tm));
|
|
|
|
tm.set_g_current_thread(Some(Rc::clone(&thread2)));
|
|
assert!(lock.held_by_current_thread(&mut tm));
|
|
assert!(!lock.free);
|
|
|
|
lock.release(&mut machine, &mut tm);
|
|
assert!(!lock.held_by_current_thread(&mut tm));
|
|
assert!(lock.free);
|
|
}
|
|
} |