burritos/src/simulator/loader.rs

650 lines
27 KiB
Rust

use crate::Machine;
use std::fs;
use std::io::Read;
/// load a 32-bits binary file into the machine
///
/// ### Parameters
///
/// - **path** path of the file to load
/// - **machine** the machine where the bin file will be loaded
/// - **start_index** at which index of machine memory you want to start to load the program
///
/// Returns in a Result any io error
pub fn load(path: &str, machine: &mut Machine, start_index: usize) -> Result<(), std::io::Error> {
let mut file = fs::File::open(path)?;
let mut instructions: Vec<u32> = Default::default();
loop {
let mut buf: [u8; 4] = [0; 4];
let res = file.read(&mut buf)?;
if res == 0 {
break; // eof
} else {
instructions.push(u32::from_le_bytes(buf));
}
}
for (i, inst) in instructions.iter().enumerate() {
machine.write_memory(4, 4 * i + start_index, inst.to_owned() as u64);
}
// #[cfg(debug_assertions)]
// println!("{:04x?}", instructions); // only print loaded program in debug build
Ok(())
}
/// The elf header defines principes aspects of the binary files, it's place at the start of the file
/// see <https://en.wikipedia.org/wiki/Executable_and_Linkable_Format#File_header> for more informations
pub struct ElfHeader {
/// Defines whether the file is big or little endian
/// true correspond to big endian, false otherwise
///
/// Offset: 0x05, size: 1 byte
pub endianess: bool,
/// Defines whether the file is 32 bits or 64 bits
///
/// Offset: 0x04, size: 1 byte
pub is_32bits: bool,
/// Version of the elf file, current version is 1
///
/// Offset: 0x06, size: 1 byte
pub version: u8,
/// Identifies the target ABI.
///
/// In this implementation: Defines if the target abi is system V compliant
///
/// Offset: 0x07, size: 1 byte
pub sys_v_abi: bool,
/// Identifies target ISA, 0xF3 correspond to RISC-V
///
/// In this implementatio, true if target isa is RISC-V, false otherwise
///
/// Offset: 0x12, size: 2 bytes
pub is_riscv_target: bool,
/// Memory address of the entry point from w<here the process starts its execution.
/// If the program doesn't have an entrypoint (i.e. not an executable), the value is 0
///
/// Offset: 0x18, size: 4 (32 bits) or 8 (64 bits)
pub entrypoint: u64,
/// Size of the elf header, 64 bytes for 64 bits and 52 for 32 bits
///
/// Offset: 0x28(32 bits) or 0x34 (64 bits), size: 2 bytes
pub elf_header_size: u16,
/// Position of the first program header entry
///
/// Offset: 0x1C (32 bits) or 0x20 (64 bits), size: 4 (32 bits) or 8 (64 bits) bytes
pub program_header_location: u64,
/// Number of entries in the progream header table
///
/// Offset: 0x2C (32 bits) or 0x38 (64 bits), size: 2 bytes
pub program_header_entries: u16,
/// Size of a program header entry
///
/// Offset: 0x2A (32 bits) or 0x36 (64 bits), size: 2 bytes
pub program_header_size: u16,
/// Position of the first section header entry
///
/// Offset: 0x20 (32 bits) or 0x28 (64 bits), size: 4 (32 bits) or 8 (64 bits) bytes
pub section_header_location: u64,
/// Number of entries in the section header table
///
/// Offset: 0x30 (32 bits) or 0x3C (64 bits), size: 2 bytes
pub section_header_entries: u16,
/// Size of a section header entry
///
/// Offset: 0x2E (32 bits) or 0x36 (64 bits), size: 2 bytes
pub section_header_size: u16,
}
impl ElfHeader {
/// return true if the 4 first bytes constitude the elf magic number
fn is_elf(instructions: &[u8]) -> bool {
instructions.get(0..4) == Option::Some(&[0x7f, 0x45, 0x4c, 0x46])
}
/// return true if big endian, false otherwise
fn check_endianess(instructions: &[u8]) -> bool {
instructions.get(5) == Option::Some(&2)
}
/// return true if file is 32 bits, false if 64 bits
fn is_32bits(instructions: &[u8]) -> bool {
instructions.get(4) == Option::Some(&1)
}
/// return the version of the elf file (should be 1)
/// Can be None if the file is smaller than 7 bytes -> the file is invalid
fn get_version(instructions: &[u8]) -> Option<u8> {
instructions.get(6).copied() // work as primitives implements Copy
}
/// return true if target abi of the binary file is System V, false otherwise
fn is_system_v_elf(instructions: &[u8]) -> bool {
instructions.get(7) == Option::Some(&0)
}
/// return true if specified target instruction set architecture is RISCV
fn is_riscv_isa(instructions: &[u8]) -> bool {
Self::get_u16_value(instructions, 0x12) == Option::Some(0xf3)
}
/// memory address of the entry point from where the process starts its execution
///
/// ## Paramters:
///
/// **instructions** List of bytes of the loaded binary file
/// **is_32bits** defines whether the binary file is 32 bits or 64 bits
fn get_entrypoint(instructions: &[u8], is_32bits: bool) -> Option<u64> {
if is_32bits {
get_address_point(instructions, 0x18, true)
} else {
get_address_point(instructions, 0x18, false)
}
}
/// Memory address of the start of the program header table
///
/// ## Paramters:
///
/// **instructions** List of bytes of the loaded binary file
/// **is_32bits** defines whether the binary file is 32 bits or 64 bits
fn get_program_header_table_location(instructions: &[u8], is_32bits: bool) -> Option<u64> {
if is_32bits {
get_address_point(instructions, 0x1c, true)
} else {
get_address_point(instructions, 0x20, false)
}
}
/// Memory address of the start of the section header table
///
/// ## Paramters:
///
/// **instructions** List of bytes of the loaded binary file
/// **is_32bits** defines whether the binary file is 32 bits or 64 bits
fn get_section_header_table_location(instructions: &[u8], is_32bits: bool) -> Option<u64> {
if is_32bits {
get_address_point(instructions, 0x20, true)
} else {
get_address_point(instructions, 0x28, false)
}
}
/// Return the size of the header, normally, 0x40 for 64 bits bin and 0x34 for 32 bits
///
/// ## Paramters:
///
/// **instructions** List of bytes of the loaded binary file
/// **is_32bits** defines whether the binary file is 32 bits or 64 bits
fn get_elf_header_size(instructions: &[u8], is_32bits: bool) -> Option<u16> {
let address = if is_32bits { 0x28 } else { 0x34 };
Self::get_u16_value(instructions, address)
}
/// return the size of a program header table entry
///
/// ## Paramters:
///
/// **instructions** List of bytes of the loaded binary file
/// **is_32bits** defines whether the binary file is 32 bits or 64 bits
fn get_program_header_size(instructions: &[u8], is_32bits: bool) -> Option<u16> {
let address = if is_32bits { 0x2a } else { 0x36 };
Self::get_u16_value(instructions, address)
}
/// return the number of entries in the program header
///
/// ## Paramters:
///
/// **instructions** List of bytes of the loaded binary file
/// **is_32bits** defines whether the binary file is 32 bits or 64 bits
fn get_number_entries_program_header(instructions: &[u8], is_32bits: bool) -> Option<u16> {
let address = if is_32bits { 0x2c } else { 0x38 };
Self::get_u16_value(instructions, address)
}
/// Return the size of a section header table entry
///
/// ## Paramters:
///
/// **instructions** List of bytes of the loaded binary file
/// **is_32bits** defines whether the binary file is 32 bits or 64 bits
fn get_section_header_size(instructions: &[u8], is_32bits: bool) -> Option<u16> {
let address = if is_32bits { 0x2e } else { 0x3a };
Self::get_u16_value(instructions, address)
}
/// Return the number of entries in the section header
///
/// ## Paramters:
///
/// **instructions** List of bytes of the loaded binary file
/// **is_32bits** defines whether the binary file is 32 bits or 64 bits
fn get_section_header_num_entries(instructions: &[u8], is_32bits: bool) -> Option<u16> {
let address = if is_32bits { 0x30 } else { 0x3c };
Self::get_u16_value(instructions, address)
}
/// Return a u16 value, usually for the size or the number of entries inside a header
///
/// This method retrieve 2 bytes and concatenate them assuming the file is little endian
///
/// ## Paramters:
///
/// **instructions** List of bytes of the loaded binary file
/// **address** Position of the first byte
fn get_u16_value(instructions: &[u8], address: usize) -> Option<u16> {
let mut bytes: [u8; 2] = [0; 2];
bytes[0] = instructions.get(address).copied()?;
bytes[1] = instructions.get(address + 1).copied()?;
Option::Some(u16::from_le_bytes(bytes))
}
}
impl TryFrom<&Vec<u8>> for ElfHeader {
type Error = ();
fn try_from(instructions: &Vec<u8>) -> Result<Self, Self::Error> {
if Self::is_elf(instructions) {
let format = Self::is_32bits(instructions);
let endianess = Self::check_endianess(instructions);
let version = Self::get_version(instructions).ok_or(())?;
let is_sys_v_abi = Self::is_system_v_elf(instructions);
let is_rv_target = Self::is_riscv_isa(instructions);
let entrypoint = Self::get_entrypoint(instructions, format).ok_or(())?;
let elf_header_size = Self::get_elf_header_size(instructions, format).ok_or(())?;
let program_header_location = Self::get_program_header_table_location(instructions, format).ok_or(())?;
let program_header_entries = Self::get_number_entries_program_header(instructions, format).ok_or(())? ;
let program_header_size = Self::get_program_header_size(instructions, format).ok_or(())?;
let section_header_location = Self::get_section_header_table_location(instructions, format).ok_or(())?;
let section_header_entries = Self::get_section_header_num_entries(instructions, format).ok_or(())?;
let section_header_size = Self::get_section_header_size(instructions, format).ok_or(())?;
Ok(ElfHeader {
endianess,
is_32bits: format,
version,
sys_v_abi: is_sys_v_abi,
is_riscv_target: is_rv_target,
entrypoint,
elf_header_size,
program_header_location,
program_header_entries,
program_header_size,
section_header_location,
section_header_entries,
section_header_size
})
} else {
Err(())
}
}
}
/// Flag of a section, a section can have multiples flags by adding the values
#[allow(clippy::enum_variant_names)]
#[allow(dead_code)]
pub enum FlagValue {
/// The section is writable
ShfWrite = 0x1,
/// The section need to be allocate/occupe memory during execution
ShfAlloc = 0x2,
/// The section need to be executable
ShfExecinstr = 0x4,
/// Section might ber merged
ShfMerge = 0x10,
/// Contain null-terminated (\0) strings
ShfStrings = 0x20,
// There is others but are unrelevant (I think)
}
/// Section header entry, contains useful informations for each sections of the binary file
///
/// see <https://en.wikipedia.org/wiki/Executable_and_Linkable_Format#Section_header>
#[derive(Debug)]
pub struct SectionHeader {
/// Offset to a string in .shstrtab section that represent the name of this section
///
/// Offset: 0x0, size: 4 bytes
pub name_offset: u32,
/// Identify the type of this header
///
/// Offset: 0x4, size: 4 bytes
pub header_type: u32,
/// Identify the atributes of this section
///
/// see `Self::does_flag_contains_key(self, FlagValue)`
///
/// Offset: 0x8, size: 4 (32 bits) or 8 (64 bits) bytes
pub flags: u64,
/// Virtual address of the section in memory if section is loaded, 0x0 otherwise
///
/// Offset: 0x0C (32 bits) or 0x10 (64 bits), size: 4 (32 bits) or 8 (64 bits) bytes
pub virt_addr: u64,
/// Offset of the section in the file image (binary file)
///
/// Offset: 0x10 (32 bits) or 0x18 (64 bits), size: 4 (32 bits) or 8 (64 bits) bytes
pub image_offset: u64,
/// Size of the section in the file image, may be 0
///
/// Offset: 0x14 (32 bits) or 0x20 (64 bits), size: 4 (32 bits) or 8 (64 bits) bytes
pub section_size: u64,
pub section_link: u32,
pub section_info: u32,
/// Contain the required alignment of the section, must be a power of 2
///
/// Offset: 0x20 (32 bits) or 0x30 (64 bits), size: 4 (32 bits) or 8 (64 bits) bytes
pub required_align: u64,
/// Contain the size of each entry, for sections that contain fixed size entries, otherwise 0
///
/// Offset: 0x24 (32 bits) or 0x38 (64 bits), size: 4 (32 bits) or 8 (64 bits) bytes
pub entry_size: u64
}
impl SectionHeader {
/// return true if flag of this section contains / have `key`, false otherwise
pub fn does_flag_contains_key(&self, key: FlagValue) -> bool {
self.flags & key as u64 != 0
}
/// Return the offset to a string in .shstrtab that represents the name of this section
fn get_name_offset(instructions: &[u8], address: usize) -> Option<u32> {
get_address_point(instructions, address, true).map(|v| { v as u32 })
// set true to return a u32
}
/// Return the type of header of the section
fn get_header_type(instructions: &[u8], address: usize) -> Option<u32> {
get_address_point(instructions, address + 0x4, true).map(|v| { v as u32 })
}
/// Return the flags of the section, can hold multiples values, see [`FlagValue`]
fn get_flags(instructions: &[u8], address: usize, is_32bits: bool) -> Option<u64> {
get_address_point(instructions, address + 0x8, is_32bits)
}
/// Return the virtual address of the section in memory if the sectino is loaded(see section flag), otherwise 0
fn get_virtual_address(instructions: &[u8], address: usize, is_32bits: bool) -> Option<u64> {
get_address_point(instructions, address + if is_32bits { 0x0C } else { 0x10 }, is_32bits)
}
/// Return the offset of the section in the file image (binary file)
fn get_image_offset(instructions: &[u8], address: usize, is_32bits: bool) -> Option<u64> {
get_address_point(instructions, address + if is_32bits { 0x10 } else { 0x18 }, is_32bits)
}
/// Return the size of the section in the file image (binary file), may be 0
fn get_section_size(instructions: &[u8], address: usize, is_32bits: bool) -> Option<u64> {
get_address_point(instructions, address + if is_32bits { 0x14 } else { 0x20 }, is_32bits)
}
fn get_section_link(instructions: &[u8], address: usize, is_32bits: bool) -> Option<u32> {
get_address_point(instructions, address + if is_32bits { 0x18 } else { 0x28 }, false).map(|v| { v as u32 })
}
fn get_section_info(instructions: &[u8], address: usize, is_32bits: bool) -> Option<u32> {
get_address_point(instructions, address + if is_32bits { 0x1C } else { 0x2C }, false).map(|v| { v as u32 })
}
/// Return the required alignment of the section, must be a power of 2
fn get_required_align(instructions: &[u8], address: usize, is_32bits: bool) -> Option<u64> {
get_address_point(instructions, address + if is_32bits { 0x20 } else { 0x30 }, is_32bits)
}
/// Contain the size of each entry for sections that contain fixed-size entries, otherwise 0
fn get_entry_size(instructions: &[u8], address: usize, is_32bits: bool) -> Option<u64> {
get_address_point(instructions, address + if is_32bits { 0x24 } else { 0x38 }, is_32bits)
}
}
impl TryFrom<(&[u8], u64, bool)> for SectionHeader {
type Error = ();
fn try_from(value: (&[u8], u64, bool)) -> Result<Self, Self::Error> {
let instructions = value.0;
let address = value.1 as usize;
let is_32bits = value.2;
let name_offset = Self::get_name_offset(instructions, address).ok_or(())?;
let header_type = Self::get_header_type(instructions, address).ok_or(())?;
let attribute = Self::get_flags(instructions, address, is_32bits).ok_or(())?;
let virt_addr = Self::get_virtual_address(instructions, address, is_32bits).ok_or(())?;
let image_offset = Self::get_image_offset(instructions, address, is_32bits).ok_or(())?;
let section_size = Self::get_section_size(instructions, address, is_32bits).ok_or(())?;
let section_link = Self::get_section_link(instructions, address, is_32bits).ok_or(())?;
let section_info = Self::get_section_info(instructions, address, is_32bits).ok_or(())?;
let required_align = Self::get_required_align(instructions, address, is_32bits).ok_or(())?;
let entry_size = Self::get_entry_size(instructions, address, is_32bits).ok_or(())?;
Ok(Self { name_offset,
header_type,
flags: attribute,
virt_addr,
image_offset,
section_size,
section_link,
section_info,
required_align,
entry_size
})
}
}
/// Error enum for [`Loader`]
#[derive(Debug)]
pub enum LoaderError {
/// Correspond to std IO error
IOError(std::io::Error),
/// Others errors
ParsingError
}
/// Global structure of the loader, one instance per loaded files
pub struct Loader {
/// List of bytes inside the binary file
bytes: Vec<u8>,
/// Elf header, see [`ElfHeader`] for more informations
pub elf_header: ElfHeader,
/// Section header table entries, see [`SectionHeader`] for more informations
pub sections: Vec<SectionHeader>
}
impl Loader {
/// # Loader constructor
///
/// Load the binary file given in parameter, parse it and load inside the machine memory
/// return the loader instance and the location of the end of the last a allocated section in memory
///
/// ## Parameters
///
/// **path**: location of the binary file on disk
/// **machine**: well, the risc-v simulator
/// **start_index**: The position at which you want to start to allocate the program
pub fn new(path: &str, machine: &mut Machine, start_index: usize) -> Result<(Self, u64), LoaderError> {
let loader = Self::load_and_parse(path)?;
let end_alloc = loader.load_into_machine(machine, start_index)?;
Ok((loader, end_alloc))
}
/// Try to load the binary file in memory after it been parsed
///
/// Binary file is loaded according to sections order and rules, see [`SectionHeader`]
///
/// Return the location of the end of the last a allocated section in memory
fn load_into_machine(&self, machine: &mut Machine, start_index: usize) -> Result<u64, LoaderError> {
let mut end_index = 0;
for i in 0..self.sections.len() {
let section = &self.sections[i];
if section.does_flag_contains_key(FlagValue::ShfAlloc) {
end_index = section.virt_addr + section.section_size;
// Can allocate to machine memory
for j in (0..section.section_size as usize).step_by(4) {
let mut buf: [u8; 4] = [0; 4];
#[allow(clippy::needless_range_loop)]
for k in 0..buf.len() {
buf[k] = self.bytes.get(section.image_offset as usize + j + k).copied().ok_or(LoaderError::ParsingError)?;
}
machine.write_memory(4, start_index + section.virt_addr as usize + j, u32::from_le_bytes(buf) as u64);
}
}
}
Ok(start_index as u64 + end_index)
}
/// Load the binary file and store it inside an array and try to parse it,
/// useful for a lot of thing like to know which sections to allocate memory and where
fn load_and_parse(path: &str) -> Result<Self, LoaderError> {
let file = fs::File::open(path);
match file {
Ok(mut file) => {
let mut instructions: Vec<u8> = Default::default();
loop {
let mut buf: [u8; 1] = [0; 1];
let res = file.read(&mut buf);
match res {
Ok(res) => {
if res == 0 {
break; // eof
} else {
instructions.push(buf[0]);
}
},
Err(err) => {
return Err(LoaderError::IOError(err))
}
}
}
let elf_header = match ElfHeader::try_from(&instructions) {
Ok(header) => {
header
},
Err(_) => {
return Err(LoaderError::ParsingError);
}
};
let section_header = match Self::parse_section_header(&instructions, elf_header.is_32bits, elf_header.section_header_location, elf_header.section_header_entries, elf_header.section_header_size) {
Ok(header) => {
header
},
Err(_) => {
return Err(LoaderError::ParsingError);
}
};
// #[cfg(debug_assertions)]
// println!("{:04x?}", instructions); // only print loaded program in debug build
Ok(Self { bytes: instructions, elf_header, sections: section_header })
},
Err(err) => {
Err(LoaderError::IOError(err))
}
}
}
/// Try to parse sections header table
///
/// Create one instance of [`SectionHeader`] for each entry and store it inside an array
///
/// ## Parameters
///
/// **instructions**: array of bytes of the binary file
/// **is_32bits**: contain whether the binary file is 32 bits or 64 bits
/// **header_location**: represent the position of the first entry of the header
/// **num_of_entries**: defines the number of section header entries
/// **entry_size**: Defines the size of an entry (each entry have the exact same size), value vary depending of if this binary file is 32 or 64 bits
fn parse_section_header(instructions: &[u8], is_32bits: bool, header_location: u64, num_of_entries: u16, entry_size: u16) -> Result<Vec<SectionHeader>, ()> {
let mut sections: Vec<SectionHeader> = Default::default();
for i in 0..num_of_entries as u64 {
sections.push(Self::parse_section_entry(instructions, is_32bits, header_location + i * entry_size as u64)?);
}
Ok(sections)
}
/// Parse one entry of the section header
///
/// ## Parameters:
///
/// **instructions**: array of bytes of the binary file
/// **is_32bits**: contain whether the binary file is 32 bits or 64 bits
/// **location**: represent the position of the entry on the file image
fn parse_section_entry(instructions: &[u8], is_32bits: bool, location: u64) -> Result<SectionHeader, ()> {
SectionHeader::try_from((instructions, location, is_32bits))
}
}
/// return the memory address of something stored at address
/// Can return None if the file is smaller than adress + 3 (or 7 if 64 bits), in this case, the elf header is incorrect
fn get_address_point(instructions: &[u8], address: usize, is_32bits: bool) -> Option<u64> {
if is_32bits {
let mut bytes: [u8; 4] = [0; 4];
bytes[0] = instructions.get(address).copied()?;
bytes[1] = instructions.get(address + 1).copied()?;
bytes[2] = instructions.get(address + 2).copied()?;
bytes[3] = instructions.get(address + 3).copied()?;
Option::Some(u32::from_le_bytes(bytes) as u64)
} else {
let mut bytes: [u8; 8] = [0; 8];
bytes[0] = instructions.get(address).copied()?;
bytes[1] = instructions.get(address + 1).copied()?;
bytes[2] = instructions.get(address + 2).copied()?;
bytes[3] = instructions.get(address + 3).copied()?;
bytes[4] = instructions.get(address + 4).copied()?;
bytes[5] = instructions.get(address + 5).copied()?;
bytes[6] = instructions.get(address + 6).copied()?;
bytes[7] = instructions.get(address + 7).copied()?;
Option::Some(u64::from_le_bytes(bytes))
}
}
/// Tests has been made for C program compiled with RISC-V GCC 12.2.0, target: riscv64-unknown-elf
///
/// It may not pass in the future if future gcc version modify order of the binary or something else
#[cfg(test)]
mod test {
use crate::simulator::{loader::{Loader, SectionHeader}, machine::Machine};
#[test]
fn test_parse_elf() {
let mut machine = Machine::init_machine();
let loader = Loader::load_and_parse("./test/riscv_instructions/simple_arithmetics/unsigned_addition").expect("IO Error");
loader.load_into_machine(&mut machine, 0).expect("Parsing error");
assert!(!loader.elf_header.is_32bits);
assert!(!loader.elf_header.endianess);
assert!(loader.elf_header.sys_v_abi);
assert!(loader.elf_header.is_riscv_target);
assert_eq!(1, loader.elf_header.version);
assert_eq!(0x4000, loader.elf_header.entrypoint);
assert_eq!(64, loader.elf_header.elf_header_size);
assert_eq!(64, loader.elf_header.program_header_location);
assert_eq!(18984, loader.elf_header.section_header_location);
assert_eq!(56, loader.elf_header.program_header_size);
assert_eq!(64, loader.elf_header.section_header_size);
assert_eq!(4, loader.elf_header.program_header_entries);
assert_eq!(9, loader.elf_header.section_header_entries);
println!("{:#x?}", loader.sections);
}
#[test]
fn test_parse_section() {
let mut machine = Machine::init_machine();
let loader = Loader::load_and_parse("./test/riscv_instructions/simple_arithmetics/unsigned_addition").expect("IO Error");
loader.load_into_machine(&mut machine, 0).expect("Parsing error");
assert_eq!(9, loader.sections.len());
let n = loader.sections.iter().filter(|p| { p.does_flag_contains_key(crate::simulator::loader::FlagValue::ShfAlloc)}).collect::<Vec<&SectionHeader>>().len();
assert_eq!(3, n);
assert_eq!(loader.sections[1].virt_addr, 0x4000);
assert_eq!(loader.sections[1].image_offset, 0x1000);
assert!(loader.sections[1].does_flag_contains_key(crate::simulator::loader::FlagValue::ShfAlloc));
assert_eq!(loader.sections[2].virt_addr, 0x400_000);
assert_eq!(loader.sections[2].image_offset, 0x2000);
assert!(loader.sections[2].does_flag_contains_key(crate::simulator::loader::FlagValue::ShfAlloc));
}
}