diff --git a/plot/main.py b/plot/main.py index df36a68..0c0c740 100644 --- a/plot/main.py +++ b/plot/main.py @@ -26,18 +26,43 @@ def mean_mkn() -> np.ndarray: return averages_mkn +def rb_available() -> np.ndarray: + available = np.zeros((size, 2)) + nb = 0 + for i in nb_files: + data = pd.read_csv(".." + os.sep + "export" + os.sep + i, delimiter=';').to_numpy() + nb_users = i.split(".")[0] + available[nb, 0] = int(nb_users) + available[nb, 1] = data.shape[0] / (200 * 10000) + nb += 1 + + """for j in range(0, 2): + for k in range(0, 10000): + nb_users = i.split(".")[0] + available[nb, 0] = int(nb_users) + if j == data[nb, 1] and k == data[:, 2]: + available[nb, 1] += 1 + """ + return available + + averages = mean_mkn() +available = rb_available() # Data for plotting averages.sort(axis=0) -x = averages[:, 0] -y = averages[:, 1] print(averages) fig, ax = plt.subplots() -ax.scatter(x, y) +ax.scatter(averages[:, 0], averages[:, 1]) -ax.set(xlabel='users', ylabel='ressources (RB)', title='MaxSNR') +ax.set(xlabel='number of users', ylabel='Efficacité spectrale', title='Efficacité spectrale') ax.grid() # fig.savefig("test.png") plt.show() + +fig, ax = plt.subplots() +ax.scatter(available[:, 0], available[:, 1]) +ax.set(xlabel='number of users', ylabel='RB utilisés', title='Pourcentage de RB utilisés') +ax.grid() +plt.show()