import os import matplotlib.pyplot as plt import numpy as np import pandas as pd nb_files = os.listdir("PF") size = len(nb_files) def mean_mkn(arr: list[tuple[int, np.ndarray]]) -> np.ndarray: averages_mkn = np.empty((size, 2)) nb = 0 for nb_users, data in arr: rb = data[:, 4] total = 0.0 for x in rb: total = total + x average = total / len(rb) averages_mkn[nb, 0] = nb_users averages_mkn[nb, 1] = average nb += 1 return averages_mkn def rb_available(arr: list[tuple[int, np.ndarray]]) -> np.ndarray: available = np.zeros((size, 2)) nb = 0 for nb_users, data in arr: available[nb, 0] = nb_users available[nb, 1] = (data.shape[0] / (200 * 20000)) * 100 nb += 1 return available def delay(arr: list[tuple[int, np.ndarray]]) -> np.ndarray: delays = np.zeros((size, 2)) nb = 0 for nb_users, data in arr: d = data[:, 5] for x in d: delays[nb, 0] = nb_users delays[nb, 1] = float(x) nb += 1 return delays def rb_allocate_distance(arr: list[tuple[int, np.ndarray]], distance) -> np.ndarray: allocate = np.zeros((size, 2)) nb = 0 arr.sort() for nb_users, data in arr: n = 0 for x in data[:,6]: if int(x) == distance: n+=1 allocate[nb, 0] = nb_users allocate[nb, 1] = n # print(n/data.shape[0]) nb += 1 return allocate np_arr: list[tuple[int, np.ndarray]] = list() for i in nb_files: np_arr.append((int(i.split(".")[0]), pd.read_csv("PF" + os.sep + i, delimiter=';').to_numpy())) averages = mean_mkn(np_arr) available = rb_available(np_arr) allocate_lp1 = rb_allocate_distance(np_arr, 100) allocate_lp2 = rb_allocate_distance(np_arr, 500) allocate_total = allocate_lp1[:, 1] + allocate_lp2[:, 1] delays = delay(np_arr) delays.sort(axis=0) # Data for plotting averages.sort(axis=0) available.sort(axis=0) del np_arr fig, ax = plt.subplots(2, 2) ax[0, 0].plot(averages[:, 0], averages[:, 1], marker="o") ax[0, 0].set(xlabel='number of users', ylabel='% Spectral efficiency', title='Spectral efficiency PF') ax[0, 0].grid() ax[0, 0].set_ylim([0, 40]) ax[0, 1].plot(available[:, 0], available[:, 1], marker="o") ax[0, 1].set(xlabel='number of users', ylabel=' % RB used', title='Percentage of RB used PF') ax[0, 1].grid() ax[0, 1].set_ylim([0, 105]) ax[1, 0].plot(delays[:, 0], delays[:, 1], marker="o") ax[1, 0].set(xlabel='number of users', ylabel='delay(ms)', title='Delay PF') ax[1, 0].grid() available.sort(axis=0) #ax[1, 1].scatter(allocate_lp1[:, 0], (allocate_lp1[:, 1]/(allocate_lp1[:, 1])+allocate_lp2[:, 1])*100) ax[1, 1].plot(available[:, 0], (allocate_lp1[:, 1]/(allocate_lp1[:, 1]+allocate_lp2[:, 1])*100), label="100 meters group") #ax[1, 1].scatter(allocate_lp2[:, 0], (allocate_lp2[:, 1]/(allocate_lp1[:, 1])+allocate_lp2[:, 1])*100) #ax[1, 1].plot(available[:, 0], available[:, 1], marker="o", label="RB used") ax[1, 1].plot(available[:, 0], (allocate_lp2[:, 1]/(allocate_lp1[:, 1]+allocate_lp2[:, 1])*100), label="500 meters group") ax[1, 1].set(xlabel='number of users', ylabel='% RB used', title='RB used depending on the distance PF') ax[1, 1].grid() ax[1, 1].set_ylim([0, 105]) ax[1, 1].legend(loc="upper left") plt.show()