import os import matplotlib.pyplot as plt import numpy as np import pandas as pd nb_files = os.listdir(".." + os.sep + "export") size = len(nb_files) def mean_mkn(arr: list[tuple[int, np.ndarray]]) -> np.ndarray: averages_mkn = np.empty((size, 2)) nb = 0 for nb_users, data in arr: rb = data[:, 4] total = 0.0 for x in rb: total = total + x average = total / len(rb) averages_mkn[nb, 0] = nb_users averages_mkn[nb, 1] = average nb += 1 return averages_mkn def rb_available(arr: list[tuple[int, np.ndarray]]) -> np.ndarray: available = np.zeros((size, 2)) nb = 0 for nb_users, data in arr: available[nb, 0] = nb_users available[nb, 1] = (data.shape[0] / (200 * 10000)) * 100 nb += 1 return available def delay(arr: list[tuple[int, np.ndarray]]) -> np.ndarray: delays = np.zeros((size, 2)) nb = 0 for nb_users, data in arr: d = data[:, 5] for x in d: delays[nb, 0] = nb_users delays[nb, 1] = float(x) nb += 1 return delays np_arr: list[tuple[int, np.ndarray]] = list() for i in nb_files: np_arr.append((int(i.split(".")[0]), pd.read_csv(".." + os.sep + "export" + os.sep + i, delimiter=';').to_numpy())) averages = mean_mkn(np_arr) available = rb_available(np_arr) delays = delay(np_arr) delays.sort(axis=0) # Data for plotting averages.sort(axis=0) del np_arr fig, ax = plt.subplots(2, 2) ax[0, 0].scatter(averages[:, 0], averages[:, 1]) ax[0, 0].set(xlabel='number of users', ylabel='Efficacité spectrale', title='Efficacité spectrale') ax[0, 0].grid() ax[0, 1].scatter(available[:, 0], available[:, 1]) ax[0, 1].set(xlabel='number of users', ylabel='RB utilisés', title='Pourcentage de RB utilisés') ax[0, 1].grid() ax[1, 0].scatter(delays[:, 0], delays[:, 1]) ax[1, 0].set(xlabel='number of users', ylabel='delays(ms)', title='Delay') ax[1, 0].grid() plt.show()