import os import matplotlib.pyplot as plt import numpy as np import pandas as pd nb_files = os.listdir(".." + os.sep + "export") size = len(nb_files) def mean_mkn() -> np.ndarray: averages_mkn = np.empty((size, 2)) nb = 0 for i in nb_files: data = pd.read_csv(".." + os.sep + "export" + os.sep + i, delimiter=';').to_numpy() rb = data[:, 4] total = 0.0 for x in rb: total = total + x average = total / len(rb) nb_users = i.split(".")[0] averages_mkn[nb, 0] = int(nb_users) averages_mkn[nb, 1] = average nb += 1 return averages_mkn averages = mean_mkn() # Data for plotting averages.sort(axis=0) x = averages[:, 0] y = averages[:, 1] print(averages) fig, ax = plt.subplots() ax.scatter(x, y) ax.set(xlabel='users', ylabel='ressources (RB)', title='MaxSNR') ax.grid() # fig.savefig("test.png") plt.show()