2023-03-24 10:37:35 +01:00
|
|
|
import os
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
import numpy as np
|
|
|
|
import pandas as pd
|
|
|
|
|
2023-04-14 21:01:23 +02:00
|
|
|
nb_files = os.listdir("PF")
|
2023-03-24 10:37:35 +01:00
|
|
|
|
|
|
|
size = len(nb_files)
|
|
|
|
|
|
|
|
|
2023-03-31 10:21:49 +02:00
|
|
|
def mean_mkn(arr: list[tuple[int, np.ndarray]]) -> np.ndarray:
|
2023-03-24 11:12:40 +01:00
|
|
|
averages_mkn = np.empty((size, 2))
|
|
|
|
nb = 0
|
2023-03-31 10:21:49 +02:00
|
|
|
for nb_users, data in arr:
|
2023-03-24 11:12:40 +01:00
|
|
|
rb = data[:, 4]
|
|
|
|
|
|
|
|
total = 0.0
|
|
|
|
for x in rb:
|
|
|
|
total = total + x
|
|
|
|
average = total / len(rb)
|
2023-03-31 10:21:49 +02:00
|
|
|
averages_mkn[nb, 0] = nb_users
|
2023-03-24 11:12:40 +01:00
|
|
|
averages_mkn[nb, 1] = average
|
|
|
|
nb += 1
|
|
|
|
return averages_mkn
|
|
|
|
|
|
|
|
|
2023-03-31 10:21:49 +02:00
|
|
|
def rb_available(arr: list[tuple[int, np.ndarray]]) -> np.ndarray:
|
2023-03-24 11:41:34 +01:00
|
|
|
available = np.zeros((size, 2))
|
|
|
|
nb = 0
|
2023-03-31 10:21:49 +02:00
|
|
|
for nb_users, data in arr:
|
|
|
|
available[nb, 0] = nb_users
|
2023-04-14 21:01:23 +02:00
|
|
|
available[nb, 1] = (data.shape[0] / (200 * 20000)) * 100
|
2023-03-24 11:41:34 +01:00
|
|
|
nb += 1
|
|
|
|
return available
|
|
|
|
|
2023-03-30 08:24:25 +02:00
|
|
|
|
2023-03-31 10:21:49 +02:00
|
|
|
def delay(arr: list[tuple[int, np.ndarray]]) -> np.ndarray:
|
2023-03-28 09:25:04 +02:00
|
|
|
delays = np.zeros((size, 2))
|
|
|
|
nb = 0
|
2023-03-31 10:21:49 +02:00
|
|
|
for nb_users, data in arr:
|
2023-03-28 09:25:04 +02:00
|
|
|
d = data[:, 5]
|
|
|
|
for x in d:
|
2023-03-31 10:21:49 +02:00
|
|
|
delays[nb, 0] = nb_users
|
2023-03-28 09:25:04 +02:00
|
|
|
delays[nb, 1] = float(x)
|
|
|
|
nb += 1
|
|
|
|
return delays
|
2023-03-24 11:41:34 +01:00
|
|
|
|
2023-03-30 08:24:25 +02:00
|
|
|
|
2023-04-13 12:40:34 +02:00
|
|
|
def rb_allocate_distance(arr: list[tuple[int, np.ndarray]], distance) -> np.ndarray:
|
|
|
|
allocate = np.zeros((size, 2))
|
|
|
|
nb = 0
|
|
|
|
arr.sort()
|
|
|
|
for nb_users, data in arr:
|
|
|
|
n = 0
|
|
|
|
for x in data[:,6]:
|
|
|
|
if int(x) == distance:
|
|
|
|
n+=1
|
|
|
|
allocate[nb, 0] = nb_users
|
|
|
|
allocate[nb, 1] = n
|
|
|
|
# print(n/data.shape[0])
|
|
|
|
nb += 1
|
|
|
|
return allocate
|
|
|
|
|
|
|
|
|
2023-03-31 10:21:49 +02:00
|
|
|
np_arr: list[tuple[int, np.ndarray]] = list()
|
|
|
|
for i in nb_files:
|
2023-04-14 21:01:23 +02:00
|
|
|
np_arr.append((int(i.split(".")[0]), pd.read_csv("PF" + os.sep + i, delimiter=';').to_numpy()))
|
2023-03-31 10:21:49 +02:00
|
|
|
|
|
|
|
averages = mean_mkn(np_arr)
|
|
|
|
available = rb_available(np_arr)
|
2023-04-13 12:40:34 +02:00
|
|
|
|
2023-04-14 21:01:23 +02:00
|
|
|
allocate_lp1 = rb_allocate_distance(np_arr, 100)
|
2023-04-13 12:40:34 +02:00
|
|
|
allocate_lp2 = rb_allocate_distance(np_arr, 500)
|
|
|
|
allocate_total = allocate_lp1[:, 1] + allocate_lp2[:, 1]
|
|
|
|
|
2023-03-31 10:21:49 +02:00
|
|
|
delays = delay(np_arr)
|
2023-03-28 09:35:26 +02:00
|
|
|
delays.sort(axis=0)
|
2023-03-24 10:37:35 +01:00
|
|
|
# Data for plotting
|
|
|
|
averages.sort(axis=0)
|
2023-04-13 11:37:13 +02:00
|
|
|
available.sort(axis=0)
|
2023-03-24 10:37:35 +01:00
|
|
|
|
2023-04-07 10:31:29 +02:00
|
|
|
del np_arr
|
|
|
|
|
2023-03-31 12:04:57 +02:00
|
|
|
fig, ax = plt.subplots(2, 2)
|
2023-04-13 11:37:13 +02:00
|
|
|
ax[0, 0].plot(averages[:, 0], averages[:, 1], marker="o")
|
2023-04-14 21:01:23 +02:00
|
|
|
ax[0, 0].set(xlabel='number of users', ylabel='% Spectral efficiency', title='Spectral efficiency PF')
|
2023-03-31 12:04:57 +02:00
|
|
|
ax[0, 0].grid()
|
2023-04-14 21:01:23 +02:00
|
|
|
ax[0, 0].set_ylim([0, 40])
|
2023-03-31 12:04:57 +02:00
|
|
|
|
2023-04-13 11:37:13 +02:00
|
|
|
ax[0, 1].plot(available[:, 0], available[:, 1], marker="o")
|
2023-04-14 21:01:23 +02:00
|
|
|
ax[0, 1].set(xlabel='number of users', ylabel=' % RB used', title='Percentage of RB used PF')
|
2023-03-31 12:04:57 +02:00
|
|
|
ax[0, 1].grid()
|
2023-04-14 21:01:23 +02:00
|
|
|
ax[0, 1].set_ylim([0, 105])
|
2023-03-31 12:04:57 +02:00
|
|
|
|
2023-04-13 11:37:13 +02:00
|
|
|
ax[1, 0].plot(delays[:, 0], delays[:, 1], marker="o")
|
2023-04-14 21:01:23 +02:00
|
|
|
ax[1, 0].set(xlabel='number of users', ylabel='delay(ms)', title='Delay PF')
|
2023-03-31 12:04:57 +02:00
|
|
|
ax[1, 0].grid()
|
|
|
|
|
2023-04-13 12:40:34 +02:00
|
|
|
available.sort(axis=0)
|
|
|
|
|
|
|
|
#ax[1, 1].scatter(allocate_lp1[:, 0], (allocate_lp1[:, 1]/(allocate_lp1[:, 1])+allocate_lp2[:, 1])*100)
|
|
|
|
|
2023-04-14 21:01:23 +02:00
|
|
|
ax[1, 1].plot(available[:, 0], (allocate_lp1[:, 1]/(allocate_lp1[:, 1]+allocate_lp2[:, 1])*100), label="100 meters group")
|
2023-04-13 12:40:34 +02:00
|
|
|
|
|
|
|
#ax[1, 1].scatter(allocate_lp2[:, 0], (allocate_lp2[:, 1]/(allocate_lp1[:, 1])+allocate_lp2[:, 1])*100)
|
|
|
|
|
2023-04-14 21:01:23 +02:00
|
|
|
#ax[1, 1].plot(available[:, 0], available[:, 1], marker="o", label="RB used")
|
2023-04-13 12:40:34 +02:00
|
|
|
|
2023-04-14 21:01:23 +02:00
|
|
|
ax[1, 1].plot(available[:, 0], (allocate_lp2[:, 1]/(allocate_lp1[:, 1]+allocate_lp2[:, 1])*100), label="500 meters group")
|
|
|
|
|
|
|
|
ax[1, 1].set(xlabel='number of users', ylabel='% RB used', title='RB used depending on the distance PF')
|
2023-04-13 12:40:34 +02:00
|
|
|
ax[1, 1].grid()
|
2023-04-14 21:01:23 +02:00
|
|
|
ax[1, 1].set_ylim([0, 105])
|
|
|
|
ax[1, 1].legend(loc="upper left")
|
2023-04-13 12:40:34 +02:00
|
|
|
|
2023-04-14 21:01:23 +02:00
|
|
|
plt.show()
|